SEGMENTASI DOKTER BERDASARKAN VOLUME KASUS KANKER PROSTAT DAN ADOPSI TERAPI NHT DI INDONESIA MENGGUNAKAN KLUSTERING K-MEANS
Abstract
Transformasi pendekatan terapi kanker prostat memerlukan pemetaan yang akurat terhadap profil dokter, baik dari segi volume penanganan kasus maupun tingkat adopsi terapi hormonal seperti New Hormonal Therapy (NHT). Penelitian ini bertujuan untuk melakukan segmentasi dokter berdasarkan karakteristik kasus kanker prostat yang mereka tangani serta tingkat pemanfaatan NHT, guna memberikan rekomendasi yang lebih terarah untuk strategi edukasi medis dan pemasaran farmasi. Metode K-Means Clustering digunakan untuk menganalisis data kategorikal dari sepuluh variabel utama, termasuk kategori volume kasus kanker prostat (total, mHSPC, nmCRPC, mCRPC), tingkat penggunaan NHT, usia dokter, spesialisasi, lokasi praktik, provinsi, dan saluran komunikasi yang disukai. Dataset mencakup 238 dokter spesialis urologi dan onkologi. Data diproses terlebih dahulu dengan metode one-hot encoding dan distandarisasi sebelum dilakukan klasterisasi. Analisis menghasilkan lima klaster utama dengan karakteristik yang berbeda-beda. Salah satu klaster mengidentifikasi dokter dengan volume kasus tinggi dan tingkat adopsi NHT yang optimal, menjadikannya kandidat ideal untuk dilibatkan sebagai Key Opinion Leader (KOL). Sebaliknya, klaster lain dengan volume kasus rendah dan pengalaman terbatas terhadap NHT memerlukan intervensi edukasi yang bersifat mendasar. Temuan ini memberikan wawasan praktis bagi perusahaan farmasi dan penyedia edukasi medis dalam merancang strategi komunikasi berbasis data. Penelitian ini menunjukkan bahwa K-Means Clustering merupakan pendekatan berbasis data yang efektif dalam mendukung pengambilan keputusan strategis dalam pemasaran farmasi, berdasarkan perilaku klinis dan kesiapan adopsi dari tenaga medis. Rekomendasi ke depan mencakup pemanfaatan hasil segmentasi ini untuk personalisasi konten edukatif dan penentuan prioritas intervensi berbasis wilayah.
References
2. Farhan, M., & Heikal, J. (2024). Used car customer segmentation using K-means clustering model with SPSS program: Case study Caroline.id. Jurnal Indonesia Sosial Sains, 5(3), 543–559. https://doi.org/10.59141/jiss.v5i03.1042
3. Mulyono, R., Ndini, A. S., Kharisma, G., & Heikal, J. (2023). Segmentation K-Means clustering model with SPSS program: Case study customer The Park Mall Sawangan. Syntax Literate: Jurnal Ilmiah Indonesia, 8(2). http://dx.doi.org/10.36418/syntax-literate.v8i2.11429
4. Beer, T. M., Armstrong, A. J., Rathkopf, D. E., Loriot, Y., Sternberg, C. N., Higano, C. S., ... & Scher, H. I. (2014). Enzalutamide in metastatic prostate cancer before chemotherapy. The New England Journal of Medicine, 371(5), 424–433. https://doi.org/10.1056/NEJMoa1405095
5. de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., ... & Scher, H. I. (2011). Abiraterone and increased survival in metastatic prostate cancer. The New England Journal of Medicine, 364(21), 1995–2005. https://doi.org/10.1056/NEJMoa1014618
6. Fizazi, K., Shore, N., Tammela, T. L., Ulys, A., Vjaters, E., Polyakov, S., ... & Chi, K. N. (2019). Nonmetastatic, castration-resistant prostate cancer and survival with enzalutamide. The New England Journal of Medicine, 380(15), 1408–1418. https://doi.org/10.1056/NEJMoa1816047
7. Global Cancer Observatory. (2020). Cancer today. International Agency for Research on Cancer. https://gco.iarc.fr/today
8. Goldsmith, L. P., Lewis, S. W., Dunn, G., & Bentall, R. P. (2015). Psychological treatments for early psychosis can be beneficial or harmful, depending on the therapeutic alliance: An instrumental variable analysis. Psychological Medicine, 45(11), 2365–2373. https://doi.org/10.1017/S0033291715000415
9. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011
10. Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson Education.
11. Nguyen, P. L., Alibhai, S. M. H., Basaria, S., D'Amico, A. V., Kantoff, P. W., Keating, N. L., ... & Morgans, A. K. (2021). Adverse effects of androgen deprivation therapy and strategies to mitigate them. European Urology, 79(1), 91–101. https://doi.org/10.1016/j.eururo.2020.06.007
12. Smith, M. R., Saad, F., Chowdhury, S., Oudard, S., Hadaschik, B. A., Graff, J. N., ... & Tombal, B. (2022). Apalutamide treatment and metastasis-free survival in prostate cancer. The New England Journal of Medicine, 378(15), 1408–1418. https://doi.org/10.1056/NEJMoa1715546
13. Tan, P. N., Steinbach, M., & Kumar, V. (2019). Introduction to data mining (2nd ed.). Pearson Education.
14. Tan, M. H., Khoo, V., Cheng, H. H., Ng, K. L., Choo, R., Ngeow, J., ... & Teoh, J. Y. (2021). Real-world challenges and opportunities for prostate cancer management in Asia Pacific: Expert recommendations by the M-CaP study group. BMC Urology, 21(1), 162. https://doi.org/10.1186/s12894-021-00900-5
15. Choudhury, A., Mahapatra, N. R., & Ramasamy, K. (2022). Economic burden of prostate cancer treatment in Southeast Asia: Challenges and policy implications. Asian Pacific Journal of Cancer Prevention, 23(3), 781–788. https://doi.org/10.31557/APJCP.2022.23.3.781
16. Teoh, J. Y. C., Hirai, H. W., Ho, J. M. W., Chan, F. C. H., Tsoi, K. K. F., Ng, C. F., & Asian Prostate Cancer (A-CaP) Study Group. (2020). Global incidence of advanced prostate cancer: A review of the literature. Asian Journal of Urology, 7(4), 233–242. https://doi.org/10.1016/j.ajur.2019.11.003
17. National Comprehensive Cancer Network. (2023). NCCN clinical practice guidelines in oncology (NCCN Guidelines®): Prostate cancer. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
18. Afwan, A. S., Pradina, D. A., Kurniawati, Y., & Heikal, J. (2024). Persona-based segmentation: Customer data mapping as the foundation of corporate marketing strategy (Case study on Scarlett Whitening). JEMSI (Jurnal Ekonomi, Manajemen, dan Akuntansi), 10(1), 750–757.
19. Apriani, A., & Heikal, J. (2024). Segmentation analysis using K-means clustering model with SPSS: Case study of Backpacker Jakarta community members. Jurnal Indonesia Sosial Sains, 5(3), 441–460. https://doi.org/10.59141/jiss.v5i03.1031
20. Ardiansyah, G. T., Santosa, S., Hasibuan, M. S., & Heikal, J. (2024). Mapping the Wuling vehicle market with K-means clustering: An effective digital marketing strategy. Jurnal Ilmiah Indonesia, 14(2), 136–150.
21. Ariati, I., Norsa, R. N., Akhsan, L., & Heikal, J. (2023). Segmentasi pelanggan menggunakan K-means clustering: Studi kasus pelanggan UHT Milk Greenfield. Cerdika: Jurnal Ilmiah Indonesia, 3(7), 729–743.
22. Arifin, S., Ardanesworo, M. F. K., Putra, A. D., & Heikal, J. (2023). Studi etnografi: Analisis persepsi penggemar Playstation yang bermain rental Playstation di Jakarta Selatan. Jurnal Media Akademik (JMA), 2(6), 1–12.
23. Ayu, G. P., Abdul, F., Septiadi, N., & Heikal, J. (2024). Segmentation of outlets with K-means clustering based on customer transaction data to define marketing strategies. Jurnal Ekonomi Sinergi, 8(1).
24. Azkia, N., Devi, R. F., Siswanto, F. H., & Heikal, J. (2024). Application of K-means clustering to analyze insurance data at PT AXA Insurance Indonesia. Journal of Business, Management and Accounting, 6(1).
25. Badri, A. K., Heikal, J., Terah, Y. A., & Nurjaman, D. R. (2022). Decision-making techniques using LSTM on Antam mining shares before and during the COVID-19 pandemic in Indonesia. ATM (Acta Informatica Malaysia), 6(2), 167–180.
26. Bustami, F., & Heikal, J. (2019). Determinants of return stock company real estate and property located in Indonesia Stock Exchange. International Journal of Economics and Financial Issues, 9(1), 79–86.
27. Butar-Butar, S. F. R., & Heikal, J. (2021). The effect of brand image, product prices, and product quality on repurchases of Kopi Petani Nusantara (Case study on Kopi Petani Nusantara consumers in Jakarta). International Journal of Scientific Research in Science and Technology, 8(6), 271–280.
28. Danurisa, A. R., & Heikal, J. (2022). Customer clustering using the K-means clustering algorithm in the top 5 online marketplaces in Indonesia. BIRCI Journal, 5(3), 24,291–24,297.
29. Daulay, R. Y., Passalaras, R. A., & Heikal, J. (2024). Customer segmentation using K-means clustering with SPSS program: Case study of consumer interest in coffee shops. Jurnal Ekonomi dan Bisnis Kontemporer, 6(1).
30. Dewi, P., Aulia, R. N., Taufiqillah, R., & Heikal, J. (2024). Customer churn prediction for life insurance using binary logistic regression. Economic Reviews Journal, 3(3), 2289–2299.

















