DETERMINATION OF SAND MINING PROSPECTIVE ZONES BASED ON SEDIMENT THICKNESS ANALYSIS USING HVSR MICROTREMOR AND GRAVITY METHODS: A CASE STUDY IN CANGKRINGAN, SLEMAN, DAERAH ISTIMEWA YOGYAKARTA

  • Firdos Bahar Sidik Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Muhammad Gilang Ramadeo Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Maria Diyah Ayu Wulandari Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Savira Zahrul Khumairo Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Ekasari Nurkholijah Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Farizki Budi Pangestu Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • ⁠Safina Fitrinova Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Haris Muhlisin Universitas Pembangunan Nasional “Veteran” Yogyakarta
Keywords: HVSR, Microtremor, Sand Mining.

Abstract

Mount Merapi is the most active type A volcano, especially on the island of Java. It produces sediment products totaling 140 million m3 located at the peak of Mount Merapi, descending through the mountain slopes to rivers originating from Mount Merapi. This sediment is subsequently utilized as a sand mining area. Therefore, it is necessary to determine prospect zones for sand mining that align with environmental, economic, and mitigation aspects in the Cangkringan area, Sleman, Yogyakarta Special Region. Seventeen microtremor measurement points were used with the Horizontal to Vertical Spectral Ratio (HVSR) method to determine sediment thickness, constituent lithology, and mining zones suitable for safety and mitigation aspects. Additionally, the gravity method was employed with 247 measurement stations obtained from GGM Plus to determine rock density and estimated thickness based on 2.5D modeling. The study resulted in the distribution of dominant soil frequencies ranging from 0.5 Hz to 7.5 Hz. High frequencies indicate old rocks, while medium frequencies suggest alluvial rocks with a thickness of ± 5 m. Low frequencies indicate alluvial rocks with a thickness exceeding ± 30 meters. Based on gravity results, the average depth is ±90-200 m with a density of 2.6 g/cm3, reflecting the depth of the bedrock in the study area, composed of andesitic volcanic rock. Soil vulnerability analysis in the study area classified into three categories, with values of 4.2-5.4 being highly vulnerable to surface deformation, values of 1.8-3.8 indicating moderate vulnerability, and values of -0.2-1.4 representing low vulnerability. Furthermore, the Peak Ground Acceleration (PGA) ranges from 500-1200 gal with intensity X. Ground Shaking Spectrum (GSS) data indicates that the study area experiences vibration phenomena with elastic soil dynamics. Therefore, the exploitation of sand resources in the Cangkringan area can be conducted in the southern region of Mount Merapi, approximately 2 km away from the mountain center. This is because the southern part of the research area has suitable mitigation measures. Moreover, based on the analysis, sediment thickness in this area ranges from ± 5-30 meters.

References

Ainia, D. K., & Jirzanah. (2021). Analisis Deep Ecology Arne Naess terhadap Aktivitas Penambangan Pasir Merapi Studi Kasus: Penambangan Pasir Merapi di Sekitar Sungai Gendol Cangkringan Kabupaten Sleman. Jurnal Ilmu Lingkungan, 19(1), 98-106.

Anjani, D. C. (2021). Analisis Ketersediaan dan Kebutuhan Air Domistik di Desa Glagaharjo, Kecamatan Cangkringan, Kabupaten, Sleman, di Yogyakarta (Doctoral dissertation, Universitas Gadjah Mada).

Arifin, S. S. (2014). Penentuan Zona Rawan Guncangan Bencana Gempa Bumi Berdasarkan Analisis Nilai Amplifikasi HVSR Mikrotremor dan Analisis Periode Dominan Daerah Liwa dan Sekitarnya. JGE (Jurnal Geofisika Eksplorasi), 2(01), 30-40.

Bahtiar, A. (2016). Pelaksanaan Izin Usaha Pertambangan (IUP) Sebagai Upaya Pengendalian Kerusakan Lingkungan Akibat Penambangan Pasir di Kabupaten Sleman.

Camus, G., Gourgaud, A., Mossand-Berthommier, P. C., & Vincent, P. M. (2000). Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. Journal of Volcanology and Geothermal Research, 100(1-4), 139-163.

Darmawan, H., Walter, T. R., Troll, V. R., & Budi-Santoso, A. (2018). Dome instability at Merapi volcano identified by drone photogrammetry and numerical modeling. Nat. Hazards Earth Syst. Sci. Discuss, 1-27.

Directorate General of Water Resources (DGWR). (2010). Study Report for Institution and Community Development. The Urgent Disaster Reduction Project for Mt. Merapi, Progo River Basin. Ministry of Public Works, Indonesia.

Fatimah, R. (2018). Mikrozonasi Gempabumi Menggunakan Metode Mikroseismik di Desa Medana dan Jenggala Kecamatan Tanjung Kabupaten Lombok Utara (Doctoral dissertation, Universitas Mataram).

Gertisser, R., Charbonnier, S. J., Troll, V. R., Keller, J., Preece, K., Chadwick, J. P., ... & Herd, R. A. (2011). Merapi (Java, Indonesia): anatomy of a killer volcano. Geology Today, 27(2), 57-62.

Gertisser, R., Charbonnier, S. J., Keller, J., & Quidelleur, X. (2012). The geological evolution of Merapi volcano, central Java, Indonesia. Bulletin of Volcanology, 74, 1213-1233.

Gunawan, R., & Darmono. (2015). Studi Kasus Imbangan Angkutan Sedimen di Kali Putih. Inersia: Jurnal Teknik Sipil dan Arsitektur, 11(1), 90-94.

Harsanto, P., Ikhsan, J., Pujianto, A., Hartono, E., Fitriadin, A. A., & Kuncoro, A. H. B. (2015). Karakteristik Bencana Sedimen Pada Sungai Vulkanik.

Ishihara, K. (1982). Evaluatian of Soil Properties for Use in Earthquake Response Analysis. Proceedings International Symposium on Numerical Model in Geomech, 237-259.

Maimun, A. K., Silvia, U. N., & Ariyanto, P. (2020). Analisis Indeks Kerentanan Seismik, Periode Dominan, Dan Faktor Amplifikasi Menggunakan Metode Hvsr di Stageof Tangerang. Jurnal Meteorologi Klimatologi dan Geofisika, 7(2), 24-30.

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).

Nakamura, Y. (2000, January). Clear identification of fundamental idea of Nakamura’s technique and its applications. In Proceedings of the 12th world conference on earthquake engineering (Vol. 2656, pp. 1-8).

Nakamura, Y. (2008), On The H/V Spectrum, The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China.

Nender, A. C. (2018). Sinkronisasi Surat Keputusan Bupati Sleman Nomor 284/Kep. Kdh/A/2011 dengan Izin Usaha Pertambangan sebagai Usaha Pengendalian Kerusakan Lingkungan Akibat Penambangan Pasir di Kabupaten Sleman.

Pancawati, K. D., Supriyadi, S., & Khumaedi, K. (2016). Identifikasi Kerentanan Dinding Bendungan dengan Menggunakan Metode Mikroseismik (Studi Kasus Bendungan Jatibarang, Semarang). Unnes Physics Journal, 5(2), 21-26.

Putri, P. S., & Raharjo, T. (2018). Legal Mismatch on Illegal Sand Mining in Indonesia: an Example in Sleman, Indonesia. Rechtsidee, 4(2), 10-21070.

PVMBG. (2014). Gunung Merapi–Sejarah Letusan Laporan 03 June 2014. Kementerian Energi dan Sumber Daya Mineral.

Ratdomopurbo, A. (2008). Pedoman Mikrozonasi. Materi Kursus. Bandung: Tidak Dipublikasikan.

Rahayu, R., Ariyanto, D. P., Komariah, K., Hartati, S., Syamsiyah, J., & Dewi, W. S. (2014). Dampak erupsi Gunung Merapi terhadap lahan dan upaya-upaya pemulihannya. Caraka Tani: Journal of Sustainable Agriculture, 29(1), 61-72.

Saaduddin, S., & Marjiyono. (2015). Pemetaan Indeks Kerentanan Tanah Kota Padang Sumatera Barat dan Korelasinya dengan Titik Kerusakan Gempabumi 30 September 2009. Yogyakarta: Proceeding. In Seminar Nasional Kebumian ke-8.

Satria, A., Resta, I. L., & Nasri, M. Z. (2020). Analisis Ketebalan Lapisan Sedimen dan Indeks Kerentanan Seismik Kota Jambi Bagian Timur. JGE (Jurnal Geofisika Eksplorasi), 6(1), 18-30.

Sungkono, B. J. (2011). Karakterisasi Kurva Horizontal-To-Vertical Spectral Ratio: Kajian Literatur Dan Permodelan. Jurnal Neutrino: Jurnal Fisika dan Aplikasinya, 4(1), 1-15.

Swastika, P. (2020). Analisis Variasi Dasar Sungai Gendol Pada Hulu Sabo Dam GE-D5 Dengan Teknik Fotogrametri (Doctoral dissertation, Universitas Gadjah Mada).

Syahputri, A., & Sismanto, S. (2020). Identifikasi Potensi Tanah Longsor Menggunakan Metode Mikrotremor Di Dusun Tegalsari Desa Ngargosari Kecamatan Samigaluh Kabupaten Kulon Progo. Jurnal Fisika Indonesia, 24(2), 66-71.

USGS. (2016). Search Earthquake Catalog. Diakses dari: https://earthquake.usgs.gov/

Uwiduhaye, J., Mizunaga, H., & Saibi, H. (2016). 2-D Forward Modelling of Gravity Data, A Case Study of Kinigi Geothermal Field, Rwanda. In Proceedings of the 135th SEGJ Conference 135.

Wibowo, N. B., & Huda, I. (2020). Analisis Amplifikasi, Indeks Kerentanan Seismik Dan Klasifikasi Tanah Berdasarkan Distribusi Vs30 DI Yogyakarta. Buletin Meteorologi, Klimatologi, Dan Geofisika, 1(2), 21-31.

Wirakusumah, A., Juwarna, H., & Loebis, H. (1989). Peta Gunungapi Merapi, Provinsi Daerah Istimewa Yogyakarta& Jawa Tengah. Bandung: Badan Geologi.

Yudiantoro, D. F., & Paramita Haty, I. (2023). Analisis Deformasi Gunung Api Merapi, Melalui Penerapan Metode Kombinasi Block Movement dan Deformasi Elastis, Pada Periode Tahun 1995-1997 Berdasarkan Data Gps (Global Positioning System). Jurnal Ilmiah Geologi Pangea, 10, 45-60.

Zuidam, R. V. (1983). Guide to Geomorphic Aerial Photographic Interpretation and Mapping, ITC.

Published
2024-01-12
How to Cite
Sidik, F. B., Ramadeo, M. G., Wulandari, M. D. A., Khumairo, S. Z., Nurkholijah, E., Pangestu, F. B., Fitrinova⁠., & Muhlisin, H. (2024). DETERMINATION OF SAND MINING PROSPECTIVE ZONES BASED ON SEDIMENT THICKNESS ANALYSIS USING HVSR MICROTREMOR AND GRAVITY METHODS: A CASE STUDY IN CANGKRINGAN, SLEMAN, DAERAH ISTIMEWA YOGYAKARTA. Journal of Scientech Research and Development, 6(1), 24-42. https://doi.org/10.56670/jsrd.v6i1.272