

Journal of Social and Economics Research

Volume 7, Issue 1, June 2025

P-ISSN: 2715-6117

E-ISSN: 2715-6966

Open Access at: <https://idm.or.id/JSER/index.php/JSER>

EXPLORING QRIS ADOPTION AMONG UNIVERSITY STUDENTS USING THE UTAUT MODEL

M. Shahahuddin¹, Henny Oktaviyani², Cean Maria Bella³

^{1,2,3}Universitas Sriwijaya, Palembang, Indonesia

Email: muhammadshahahuddin@fe.unsri.ac.id

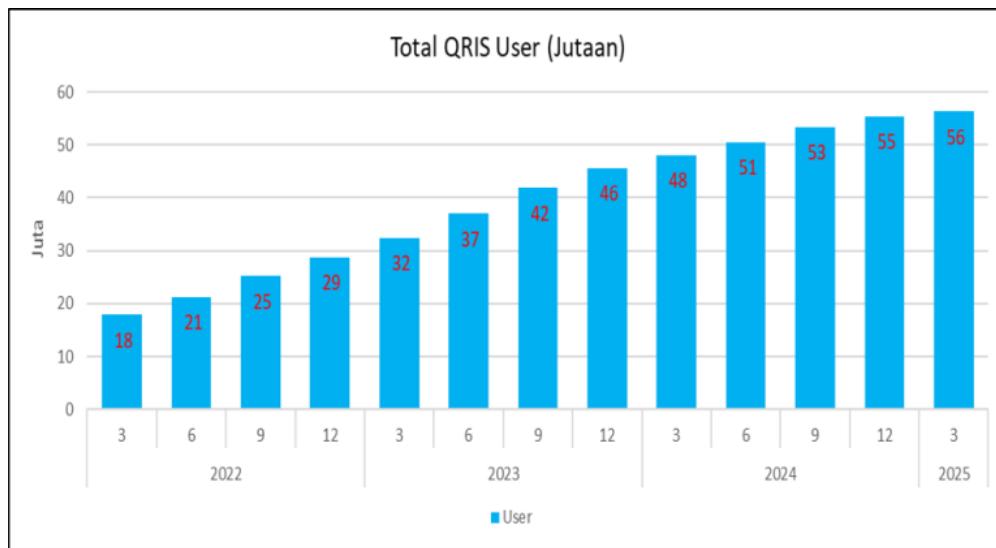
ARTICLE INFO

Keywords:

QRIS, UTAUT, University of Sriwijaya, SEM-PLS.

ABSTRACT

Digital transformation in the financial sector has encouraged the use of non-cash payment systems, one of which is the Quick Response Indonesian Standard (QRIS) issued by Bank Indonesia. Students, as digital natives, are seen as one of the segments with the potential to drive this change. This study aims to analyze the intention to use QRIS among students at Sriwijaya University using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. Data was collected through an online questionnaire distributed to 240 respondents, and the analysis technique used was Structural Equation Modeling - Partial Least Squares (SEM-PLS). The results indicate that Performance Expectancy (PE), Social Influence (SI), and Facilitating Conditions (FC) significantly influence Behavioral Intention (BI), while Effort Expectancy (EE) does not have a significant influence. The results also conclude that Facilitating Conditions (FC) and Behavioral Intention (BI) influence Usage Behavior (UB). The findings provide insights into the factors that partially influence the intention to use QRIS and how to develop strategies to encourage QRIS usage among the younger generation.


Copyright © 2025 JSER. All rights reserved.

INTRODUCTION

Technology continues to develop exponentially in various fields, including finance, which is referred to as financial technology (fintech). Financial technology (Fintech) refers to financial services that use technology to provide efficiency to users or customers. Fintech makes it easier for people to make payments, enables access to savings and credit offers across various platforms, and accelerates transactions (Aseng, 2020). The development of financial technology (Fintech) aligns with existing technological advancements, necessitating preparedness for its adoption. Fintech has expanded into digital payments, e-commerce, online banking, and many other areas, offering various services including banking, capital markets, blockchain companies, and others (Madir, 2021). From a business perspective, it is important for financial technology (Fintech) companies to understand the level of acceptance of Fintech among the public and the factors influencing people's willingness to use this

technology.

Fintech is growing rapidly in Indonesia. With a vast population, a growing middle class, and high mobile phone and internet penetration, Indonesia is a huge prospective market for the financial technology (fintech) business (Sugandi, 2021; Suryono et al., 2021). The transition from cash-based to electronic transactions highlights the ongoing digital transformation within payment systems. One manifestation of this transition is the introduction of a QR Code-based payment system by Bank Indonesia, referred to as the Quick Response Code Indonesian Standard (QRIS). QRIS has emerged as a prevalent payment mechanism in Indonesia after its introduction on August 17, 2019, and commenced implementation in January 2020.

Figure 1. Number of QRIS Users

Source: Indonesian Payment Systems Association

Figure 1 shows that as of March 2025, there were 56 million users of QRIS, according to data from the Indonesian Payment Systems Association, showing a significant increase from 2022, which only had 18 million users. Based on data from the Indonesian Payment Systems Association, the volume of QRIS transactions as of March reached 1.02 billion transactions, an increase of 169% year-on-year. According to Bank Indonesia data, the majority of QRIS users are Generation Z, followed by Millennials. Many Generation Z users are currently students and are digital natives who have grown up alongside technological advancements. Research indicates that younger generations tend to prefer payment methods aligned with their digital lifestyles, showing a strong preference for user-friendly systems (Apriadi & Chadir, 2024; Tatian et al., 2024).

The use of QRIS among young people, such as university students, has been extensively studied and shows interesting dynamics, such as factors influencing the intention to use QRIS. The factors determining the use of QRIS still vary among researchers. A study conducted by Azzahro Azzahroo & Estiningrum (2021) "Performance expectancy and facilitating conditions have a positive effect on the intention to use QRIS, while effort expectancy and social influence do not have a significant effect". Similar results were found by Nuswantoro et al (2024), who discovered that "social influence, effort expectancy, and price value do not significantly influence the intention to use QRIS among students". Safitri et al (2024) research found

that ease of use, speed, accuracy, and efficiency in transactions are the primary drivers of QRIS adoption among students. This study's results indicate that our existing comprehension of the elements affecting students' intentions to utilize QRIS is deficient in empirical evidence. Consequently, the purpose of this research is to find out what motivates people to really use QRIS.

This study attempts to specifically examine students at Sriwijaya University using the Unified Theory of Acceptance and Use of Technology (UTAUT) model, which has been widely used by researchers. Theoretically, this study will strengthen the UTAUT model in the context of digital payment system adoption by the younger generation.

According to Knewton & Rosenbaum (2020), fintech is defined as technology for providing financial services and is characterized by the use of more advanced technology than before. Rapid technological developments can provide quite varied definitions from various literature and institutions regarding what fintech is and the types of facilities it offers. When the first automated teller machine (ATM) arrived in Indonesia in 1987 from Bank Niaga, it marked the beginning of fintech development in Indonesia. Since then, fintech has grown rapidly in Indonesia with various financial services from various providers. Then in 2016, the Indonesian Fintech Association (AFTECH) was established as a forum for fintech companies in Indonesia, marking the rapid development of fintech to date. To address regulatory issues arising from rapid and diverse growth, the government and relevant authorities have established a regulatory framework. The fintech regulators and fintech startups in Indonesia are the Bank of Indonesia (BI) and Otoritas Jasa Keuangan (OJK). The Bank of Indonesia focuses more on payment systems and innovations such as payment systems and QRIS. Meanwhile, the Financial Services Authority (OJK) focuses more on regulating lending services.

A QR (Quick Response) code is a two-dimensional code that encodes information in a way that is easily readable by digital devices. Traditional transaction methods require physical money, but QR codes can simplify this process by simply scanning the code and then setting the transaction amount and destination before completing the payment (Rudolf, 2024; Ruslan et al., 2019). For the purpose of facilitating QR code-based payments in Indonesia, a national coding standard called QRIS was developed.

Implementation of QRIS commenced in January 2024 after its initial introduction on August 17, 2019, by Bank Indonesia and the Indonesian Payment Systems Association (ASPI). QRIS itself consists of two types according to Indonesian Payment Systems Association, namely:

1. Merchant Presented Mode (MPM), which is a QR code presented by the merchant to the consumer and can be static or dynamic. Static MPM is a QRIS image displayed in print/digital form that is static or unchanging. Meanwhile, dynamic MPM is a QRIS image displayed on a digital screen device where the QR code changes or differs between consumers.
2. Consumer Presented Mode (CPM), the customer shows a QR code which is then scanned by the merchant.

The introduction of QRIS aims to increase financial inclusion in Indonesia so that it is easily accessible to various groups and supports the national agenda towards a cashless society Ayuningtyas et al., 2024; A. Safitri & Fihartini, 2024). QRIS is currently

one of the drivers of economic digitalization in Indonesia, in line with the concept promoted by QRIS, namely "UNGGUL," which stands for:

1. *UNIVERSAL*, QRIS is intended to function as a universal payment system accessible to all stakeholders.
2. *GAMPANG*, meaning QRIS is easy to use by anyone, which is the most significant factor in its success.
3. *UNTUNG*, QRIS offers numerous benefits for both users and businesses.
4. *LANGSUNG*, QRIS transactions are processed instantly, reflecting speed and efficiency in transactions.

A model developed to analyse the elements that drive technology adoption is the Unified-Theory of Acceptance and Use of Technology (UTAUT). UTAUT was introduced by Venkatesh et al (2003) by integrating variables from eight different theories on technology adoption. Williams et al (2015) argue "UTAUT aims to provide a more holistic understanding in predicting the factors influencing individuals in adopting technology".

The UTAUT model has been extensively utilised in several research on technology adoption since its introduction. These studies span numerous domains, including business, education, health, and more. (Alasmari et al., 2024; Binyamin & Zafar, 2021; Sklavos et al., 2024). Venkatesh et al (2003) introduced "four main constructs" through UTAUT: Performance Expectancy refers to the extent to which individuals believe that using technology will enhance their productivity and overall performance. Effort Expectancy relates to users' perceptions of how easy it is to operate the technology. Social Influence reflects the impact of social surroundings in shaping an individual's intention to adopt technological tools. Meanwhile, Facilitating Conditions describe the availability of necessary infrastructure, support systems, and resources that enable users to utilize the technology efficiently.

Venkatesh et al (2003) define "Performance Expectancy (PE) as the level of confidence an individual has that the use of technology or systems can help them improve their work performance. "This construct is formed from five constructs from various related models, namely perceived usefulness (TAM/TAM2 and C_TAM_TP), Extrinsic Motivation (MM), Job-fit (MPCU), relative advantage (IDT), and outcome expectations (SCT)" (Venkatesh et al., 2003, pp.447). Lau & Kulsum (2023) in her study on the intention to use QRIS among Gen Z found that Performance Expectancy (PE) has a positive and significant effect on Behavioral Intention to use QRIS. Mubarok et al (2023) say that "Performance Expectancy (PE) contributes positively to Behavioral Intention to use QRIS". These results are consistent with the research by Chand & Kumar (2024), who found that the adoption of m-payment is influenced by Performance Expectancy (PE) in Fiji. Based on these research results, this study proposes the following hypothesis:

H1: Performance Expectancy (PE) has a significant effect on Behavioral Intention (BI)

Venkatesh et al (2003) define Effort Expectancy (EE) as "the degree of ease associated with the use of the system"(pp.450) . "Three other model constructs build on Effort Expectancy (EE), namely Perceived Ease of Use (TAM/TAM2), Complexity (MPCU), and Ease of Use (IDT)" (Venkatesh et al., 2003, pp.450). Lonardi & Legowo (2021) menyimpulkan dari penelitian mereka terhadap masyarakat Jakarta bahwa Effort Expectancy (EE) mempengaruhi "niat menggunakan QRIS.". Research by Lau &

Kulsum (2023) supports the finding that the adoption of QRIS is influenced by Effort Expectancy (EE). This Variable influences "the intention to use technology," according to multiple other research (Chand & Kumar, 2024; Paramita & Cahyadi, 2024; Ramayanti et al., 2025; Sehat et al., 2024). This study posits the following hypothesis based on the research findings:

H2: Effort Expectancy (EE) has a significant effect on Behavioral Intention (BI)

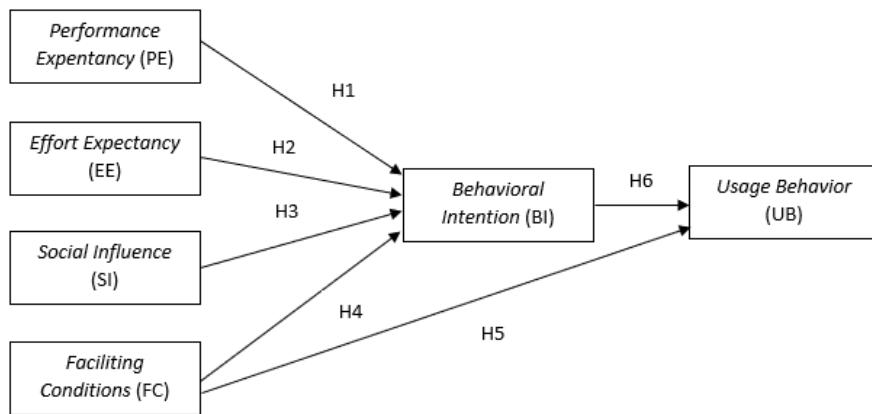
Social influence pertains to how much an individual believes that important people in their environment expect them to embrace and utilize the new system (Venkatesh et al., 2003). "Social Influence (SI) is represented as a subjective norm in TRA, TAM2, TPB-DTPB, and C-TAM-TPB, a social factor in MPCU, and an image in IDT" (Venkatesh et al., 2003, pp.451). Hafifah et al. (2022) and Kamalia et al. (2023) argue that Social Influence (SI) significantly contributes to the formation of Behavioral Intention (BI) when individuals consider adopting new technology. Research by Lonardi & Legowo (2021) found that the influence of close others can affect Behavioral Intention (BI) by providing recommendations for technology use. Several studies support the finding that Social Influence (SI) influences Behavioral Intention (BI) (Chand & Kumar, 2024; Ciptowati & Setiawan, 2024; Hamzah Muchtar et al., 2024; Lau & Kulsum, 2023; Paramita & Cahyadi, 2024; Rachmawati et al., 2025). Therefore, the hypothesis proposed is:

H3: Social Influence (SI) has a significant effect on Behavioral Intention (BI).

Venkatesh et al (2003) define Facilitating Conditions (FC) as "the degree to which an individual believes that an organizational and technical infrastructure exists to support use the system" (pp.453). Hamzah Muchtar et al (2024) found in their study that facilitating conditions influence Behavioral Intention toward QRIS. The availability of resources is a crucial element driving the usage of QRIS, as confirmed by this finding. This study aligns with previous research (Azzahroo & Estiningrum, 2021; Ciptowati & Setiawan, 2024; Nuswantoro et al., 2024; Rachmawati et al., 2025). Based on the results of these previous studies, the research hypothesis is:

H4: Facilitating Conditions (FC) significantly influence Behavioral Intention (BI)

According to Venkatesh et al (2003), Facilitating Conditions (FC) based on empirical results directly influence Usage Behavior (UB) and are in line with the TPB/DTPB theory, which states the same thing. A comprehensive understanding of Facilitating Conditions (FC) highlights their crucial role as determinants of behavior/Usage Behavior (UB) (Gayan Nayanajith et al., 2019; Pham et al., 2023). Chand & Kumar (2024) studied the adoption of m-payment in Fiji and found that Usage Behavior (UB) is influenced by Facilitating Conditions (FC). This indicates that the availability of facilities is an important factor as it is required when conducting transactions. Based on this statement, the hypothesis proposed is:


H5: Facilitation Conditions (FC) significantly influence Usage Behavior (UB)

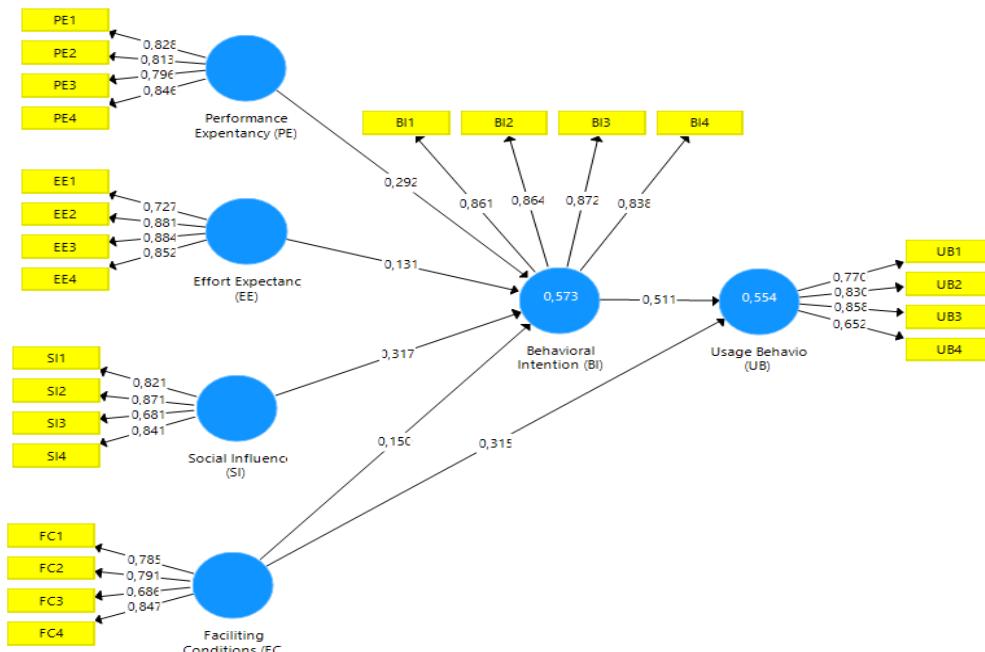
Behavioral Intention (BI) "indicates an individual's intention to do something, which also reflects how hard they will try to use a particular technology. Behavioral intention is a fundamental construct that not only predicts but also regulates usage behavior. Numerous research have investigated the correlation between behavioural intention and usage (Ciptowati & Setiawan, 2024; Nuswantoro et al., 2024; Paramita & Cahyadi, 2024; Rachmawati et al., 2025; Ramayanti et al., 2025). This study posits the following

hypothesis based on the research findings:

H6: Behavioral Intention (BI) has a significant effect on Usage Behavior (UB)

This study examines four variable constructs from the UTAUT model. The subsequent text presents the conceptual basis for this study.

Figure 2. Conceptual Framework


METHODS

This research employs a quantitative methodology to identify the determinants affecting intention and behavior in the adoption of QRIS. The study population comprises students of Sriwijaya University in South Sumatra. Sampling was conducted through basic random sampling, and analysis was carried out utilising Structural Equation Modelling - Partial Least Squares (SEM-PLS). The minimal sample size for SEM-PLS is fivefold the number of indicators employed to assess the variables (Solimun, 2002), where the number of indicators in this study is 24, resulting in a minimum sample size of 120 samples. Hair et al (2014) assert that "a more appropriate sample size is tenfold the number of indicators". This study successfully obtained 240 samples, which is acceptable as a research sample. Data collection was executed by a questionnaire disseminated to students via Google Forms. The questionnaire is structured according to the UTAUT model, the evaluation is based on a five-point Likert scale, where 1 represents a strong disagreement and 5 represents a strong agreement.

RESULTS AND DISCUSSION

Outer Model Evaluation

Validity Test

Figure 3. Convergent Validity

Source: SmartPLS Data Processing Results, 2025

Convergent validity is a concept in validating constructs that aims to evaluate whether the measurement items intended to assess the construct are truly correlated with each other. Values for outer loading can still be tolerated up to 0.5, while those below 0.5 may be eliminated from the analysis (Ghozali & Latan, 2015). Figure 3 shows outer loading values above 0.5 for each indicator of each construct, indicating that the questionnaire has good validity. Additionally, The AVE (Average Variance Extracted) value can also be utilised to assess Convergent Validity. Fornell & Larcker, David (1981) argue "convergent validity is acceptable if the AVE value is greater than 0.5, meaning that the latent construct explains at least 50% of the indicator variance". Based on Table 2, AVE values exceeding 0.5 suggest that the latent construct has the capacity to account for over 50% of the variance. The results of outer loadings and AVE indicate that the questionnaire used has met the validity criteria for use.

Table 1. Construct Reliability and Validity

	Cronbach's Alpha	rho_A	Composite Reliability	Average Variance Extracted (AVE)
Performance Expectancy (PE)	0,840	0,852	0,892	0,674
Effort Expectancy (EE)	0,859	0,881	0,904	0,703
Social Influence (SI)	0,818	0,836	0,881	0,651
Facilitating Conditions (FC)	0,783	0,795	0,860	0,608
Behavioral Intention (BI)	0,881	0,882	0,918	0,738
Usage Behavior (UB)	0,783	0,790	0,862	0,611

Source: SmartPLS Data Processing Results, 2025

Reliability Test

Hair et al. (2014) define reliability as "the degree of consistency of an instrument in measuring what it is intended to measure". Reliability is important to test in questionnaires to reduce measurement errors and improve the validity of results. Low reliability will result in weaker testing and unreliable results (Grewal et al., 2004). "The composite reliability" and "Cronbach's" alpha values show the level of reliability. Hair et al. (2014) state that "a composite reliability value greater than 0.7 indicates good reliability", while Cheung et al. (2024) state that "a Cronbach's alpha value greater than 0.7 has been widely used as a standard for acceptable reliability". As shown in Table 2 above, The composite reliability and Cronbach's alpha scores above 0.7, signifying that the questionnaire employed is reliable and can be used as a measure of the variables.

Inner Model Evaluation

Coefficient of Determination

Ghozali (2021) defines the coefficient of determination as "a measure used to evaluate model fit by quantifying how much of the variance in the dependent variable can be explained by the independent variables in the model". Zikmund (2000) and also Moore et al (2013) categorize the coefficient of determination (R^2) as very weak when the value is below 0.3, weak when $0.3 < R^2 < 0.5$, moderate when $0.5 < R^2 < 0.7$, and strong when the value exceeds 0.7. Table 3 shows that the R-squared value is 0.573 for the dependent variable Behavioral Intention (BI) and 0.554 for the variable Usage Behavior (UB), both of which fall into the moderate category. The findings demonstrate that Behavioral Intention (BI) accounts for 57.3%, with the remaining 42.7% attributed to other variables. The Usage Behavior (UB) variable can be explained by the Behavioral Intention (BI) and Facilitation Conditions (FC) variables by 55.4%, additional factors accounting for 44.6% of the variance.

Table 2. Determination Coefficient Results

Independent Variable	R ²
Behavioural Intention (BI)	0,573
Usage Behavior (UB)	0,554

Source: SmartPLS Data Processing Results, 2025

Hypothesis Testing (t-test)

Hypothesis testing or t-test is used to draw conclusions from the results or answer previously proposed hypotheses. Ghazali (2021) states that “the hypothesis is accepted when the P-value is less than 0.05 and rejected when the P-value exceeds 0.05”.

Table 3. Hypothesis Testing

	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Performance Expectancy (PE) -> Behavioral Intention (BI)	0,292	0,289	0,083	3,535	0,000
Effort Expectancy (EE) -> Behavioral Intention (BI)	0,131	0,136	0,092	1,428	0,154
Social Influence (SI) -> Behavioral Intention (BI)	0,317	0,319	0,066	4,825	0,000
Facilitating Conditions (FC) -> Behavioral Intention (BI)	0,150	0,146	0,074	2,035	0,042
Facilitating Conditions (FC) -> Usage Behavior (UB)	0,315	0,320	0,070	4,533	0,000
Behavioral Intention (BI) -> Usage Behavior (UB)	0,511	0,509	0,066	7,720	0,000

Source: SmartPLS Data Processing Results, 2025

The findings illustrated in the table indicate that Behavioural Intention is notably affected by Performance Expectancy (PE), as evidenced by P-values falling below the 0.05 threshold. The original sample estimate of 0.292 substantiates this positive relationship, thereby affirming Hypothesis 1. Conversely, Effort Expectancy (EE) shows no substantial effect on Behavioural Intention (BI), as indicated by the P-value of 0.154, which surpasses the conventional threshold for significance. As a result, the evidence does not substantiate Hypothesis 2, resulting in its dismissal. At the same time, Social Influence (SI) shows a remarkable and statistically significant impact on Behavioural Intention (BI). The findings are supported by P-values below 0.05 and a positive original sample value of 0.317, indicating that Hypothesis 3 can be accepted. Furthermore, a significant and positive relationship is observed between Behavioural Intention (BI) and Facilitating Conditions (FC), evidenced by P-values that are below 0.05 and a positive direction of influence, with an original sample score of 0.150. The findings support the validity of Hypothesis 4. Moreover, the analysis substantiates that Facilitating Conditions (FC) have a positive and significant impact on Usage Behaviour (UB), as indicated by P-values below 0.05, which strengthens this finding. In light of these results, Hypothesis 5 is confirmed. Finally, the findings indicate that Behavioural Intention (BI) exerts a significant and positive effect on Usage Behaviour (UB), as evidenced by P-values below 0.05 and a robust original sample estimate of

0.511. The results support the validity of Hypothesis 6.

This research seeks to identify the determinants affecting the intention and utilization of QRIS, grounded in the UTAUT model established by Venkatesh et al (2003). The findings demonstrate that Performance Expectancy (PE) significantly impacts Behavioural Intention (BI) regarding the utilisation of QRIS. These results indicate that respondents found that users perceive QRIS as enhancing their performance levels or efficiency. Apriadi & Chaidir (2024) found similar results in their study on Generation Z, where they discovered that QRIS facilitates faster transactions and positively influences students' intentions to use QRIS. These results suggest that students perceive QRIS as improving transaction efficiency, thereby increasing their intentions to use QRIS. Similar results were also found by several researchers who demonstrated that Performance Expectancy (PE) significantly affects Behavioural Intention (BI) (Chand & Kumar, 2024; Mubarok et al., 2023; Wibowo & Sobari, 2023). Chand & Kumar (2024), in their study, state that "Performance Expectancy (PE) significantly influences Behavioral Intention (BI) in the adoption of technology". Similarly, (Mubarok et al. (2023) assert that Performance Expectancy plays a positive and significant role in shaping users' intentions to adopt QRIS. Wibowo & Sobari (2023) also explain that "individuals are more likely to intend to use QRIS when they perceive the system as useful and beneficial, reflecting the strong effect of Performance Expectancy on Behavioral Intention".

The findings of this study indicate that Effort Expectancy (EE) did not have a significant impact on Behavioral Intention (BI) regarding the use of QRIS. Sihombing et al (2024) state that Effort Expectancy (EE) has no significant influence on Behavioral Intention (BI) in the context of QRIS adoption. Alqudah et al (2021) argue that "behavioral intention to use is more driven by usefulness than ease of use". Natswa & Subagyo (2024) argue that although users perceive QRIS as easy to use, this perception does not necessarily significantly influence the intention to adopt the system. The results of this study are also supported by several studies that found Effort Expectancy (EE) has no influence (Apriadi & Chaidir, 2024; Atha Kurniawan et al., 2025; Azzahroo & Estiningrum, 2021; Hamzah Muchtar et al., 2024; Mubarok et al., 2023; Rachmawati et al., 2025; Santi & Chalid, 2024).

The findings indicate that Behavioural Intention (BI) to utilise QRIS among students is affected by Social Influence (SI), indicating the role of environmental factors and input from peers or significant others in shaping their adoption behavior. Social Influence (SI) or social influence is a significant factor that increases Behavioral Intention (BI), as evidenced by a number of studies that found peer pressure or environmental influence plays a crucial role in shaping usage intentions. Lonardi & Legowo (2021) research on the Jakarta metropolitan area found that Social Influence (SI) has a positive effect on Behavioral Intention (BI). He added that individuals are more likely to recommend a service or application to others if it provides value that is perceived as beneficial and advantageous to users. These findings are consistent with those of several researchers who state that Social Influence (SI) affects Behavioral Intention (BI) (Azzahroo & Estiningrum, 2021; Ciptowati & Setiawan, 2024; Nuswantoro et al., 2024; Rachmawati et al., 2025).

Facilitating Conditions (FC) or adequate facilities in this study show that they have an influence on Behavioral Intention (BI) and Usage Behavior (UB) of QRIS use. Apriadi & Chaidir (2024) state that "Facilitating Conditions (FC) have a positive and significant

influence on Behavioral Intention (BI) and Usage Behavior (UB) of QRIS among Gen Z". Apriadi & Chadir (2024) emphasize the significance of environmental support in fostering users' intention and readiness to adopt QRIS. This relationship illustrates that when users perceive supportive conditions, their behavioral intentions and usage behavior are positively influenced. The results of this study also indicate that Behavioral Intention (BI) or intention leads to Usage Behavior (UB). Apriadi & Chadir (2024) state that a strong intention is more likely to lead to adoption in this context, specifically QRIS. Ultimately, Behavioral Intention (BI) is a key determinant that influences Usage Behavior (UB) of QRIS.

CONCLUSION

QRIS has become a popular payment system since the Covid-19 pandemic, with its user base growing every year, both among consumers and businesses. QRIS has gained popularity due to its convenience and has significantly helped the business sector in conducting transactions more efficiently and quickly. The UTAUT model was used to investigate the intentions and behaviors of students at Sriwijaya University in adopting this payment system. The results of this study demonstrate that all variables, with the exception of Effort Expectancy (EE), have an impact on the intention to utilize QRIS. The results indicate that intention and Facilitating Conditions (FC) have an impact on Usage Behavior (UB), specifically regarding the use of QRIS.

This study still has several limitations, such as a narrow scope, which is limited to students at Sriwijaya University. In addition, this study only uses the basic UTAUT model without adding the possibility of moderating variables such as financial literacy, digital literacy, or others. Therefore, future researchers can explore this further. Future researchers could expand the scope of the study, for example, to include students in Palembang City or even the province. Additionally, future researchers could incorporate moderating variables that may strengthen the intention or behavior in adopting QRIS.

REFERENCES

Alasmari, M., Brika, S., Onn, W. C., Al-Ahmari, D., & Al-Mawlid, A. (2024). Behavioural Intention of Using E-Learning System: A Bibliometric Perspective. *Journal of Ecohumanism*, 3(8), 1595–1616. <https://doi.org/10.62754/joe.v3i8.4841>

Alqudah, A. A., Al-Emran, M., & Shaalan, K. (2021). Technology acceptance in healthcare: A systematic review. *Applied Sciences*, 11(22). <https://doi.org/10.3390/app112210537>

Apriadi, F., & Chadir, T. (2024). Generation Z's Decision to Use QRIS in Mataram City: UTAUT Model. *Journal of Economics, Finance And Management Studies*, 07(05), 2426–2435. <https://doi.org/10.47191/jefms/v7-i5-18>

Aseng, A. C. (2020). Factors Influencing Generation Z Intention in Using FinTech Digital Payment Services. *CogITO Smart Journal*, 6(2), 155–166. <https://doi.org/10.31154/cogito.v6i2.260.155-166>

Ayuningtyas, A., Adinugraha, H. H., & Sulthoni, M. (2024). Quick Response Code

Indonesian Standard as a Digital Payment Solution to Increase the Turnover and Reduce the Circulation of Counterfeit Money. *Journal of Education and Computer Applications*, 1(1), 25-31. <https://doi.org/10.69693/jeca.v1i1.7>

Azzahroo, R. A., & Estiningrum, S. D. (2021). Preferensi Mahasiswa dalam Menggunakan Quick Response Code Indonesia Standard (QRIS) sebagai Teknologi Pembayaran. *Jurnal Manajemen Motivasi*, 17(1), 10. <https://doi.org/10.29406/jmm.v17i1.2800>

Binyamin, S. S., & Zafar, B. A. (2021). Proposing a mobile apps acceptance model for users in the health area: A systematic literature review and meta-analysis. *Health Informatics Journal*, 27(1). <https://doi.org/10.1177/1460458220976737>

Chand, S. S., & Kumar, B. A. (2024). Applying the UTAUT Model to Understand M-payment Adoption. A Case Study of Western Part of Fiji. *Journal of the Knowledge Economy, February*. <https://doi.org/10.1007/s13132-023-01722-x>

Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C. (2024). Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. In *Asia Pacific Journal of Management* (Vol. 41, Issue 2). Springer US. <https://doi.org/10.1007/s10490-023-09871-y>

Ciptowati, L., & Setiawan, D. (2024). An Analysis of QRIS Usage Behavior Using UTAUT Approach. *Asia Pacific Management and Business Application*, 13(1), 19-36. <https://doi.org/10.21776/ub.apmba.2024.013.01.2>

Fornell, C., & Larcker, David, F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. *Journal of Marketing Research*, 18(1), 39-50.

Gayn Nayanajith, D. A., Weerasiri, R. A. S., & Damunupola, K. A. (2019). A Review on E-Banking Adoption in the Context of E-Service Quality. *Sri Lanka Journal of Marketing*, 5(2), 25-52. <https://doi.org/10.4038/sljamok.v5i2.28>

Ghozali, I. (2021). *Applikasi Analisis Multivariate Dengan Program IBM SPSS 26*. Badan Penerbit Universitas Diponegoro.

Ghozali, I., & Latan, H. (2015). *Partial Least Squares Konsep, Konsep, Teknik Dan Aplikasi Menggunakan Program SmartPLS 3.0*. Badan Penerbit Universitas Semarang.

Grewal, R., Cote, J. A., & Baumgartner, H. (2004). Multicollinearity and measurement error in structural equation models: Implications for theory testing. *Marketing Science*, 23, 519-529.

Hafifah, L. L., Utami, N. W., & Dwi Putri, I. G. A. P. (2022). Analisis Faktor Yang Mempengaruhi Behavioral Intention Dan User Behavior Pada Fintech Shopeepay Menggunakan Model Unified Theory of Acceptance and Use of Technology (UTAUT). *Jurnal Akuntansi Bisnis*, 15(2), 102-117. <https://doi.org/10.30813/jab.v15i2.3574>

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis. In *Neuromarketing in India: Understanding the Indian Consumer* (Seventh Ed). Pearson Education Limited. <https://doi.org/10.4324/9781351269360>

Hamzah Muchtar, E., Trianto, B., Maulana, I., Alim, M. N., Marasabessy, R. H., Hidayat, W., Junaedi, E., & Masrizal. (2024). Quick response code Indonesia standard (QRIS) E-payment adoption: customers perspective. *Cogent Business and Management*, 11(1). <https://doi.org/10.1080/23311975.2024.2316044>

Kamalia, N. F., Suhud, U., & Monoarfa, T. A. (2023). Analisis Fakto-faktor yang Mempengaruhi Intention to Use E-wallet Pada Konsumen Muda di Jakarta. *Journal of Comprehensive Science*, 2(5), 1306–1315.

Karmawan, G. M., Fernandoand, Y., & Gui, A. (2019). QR code payment in Indonesia and its application on mobile banking. *KnE Social Sciences*, 551-568.

Knewtson, H. S., & Rosenbaum, Z. A. (2020). Toward Understanding FinTech and its Industry. *Managerial Finance*, 46(8), 1043–1060. <https://doi.org/https://doi.org/10.1108/MF-01-2020-0024>

Kurniawan, A., Jazman, M., Fronita, M., & Ahsyar, T. K. (2025). Analysis of Acceptance and Use of QRIS Payment Method using the UTAUT-3 Model. *INOVTEK Polbeng-Seri Informatika*, 10(1), 191-203.

Lau, E. A., & Kulsum, U. (2023). Becoming a Cashless Society: The Role of QRIS from the Z-Generation Student's Perspective. *Journal of Accounting and Strategic Finance*, 6(1), 172-191. <https://doi.org/10.33005/jasf.v6i1.404>

Lonardi, H., & Legowo, N. (2021). Analysis of Factors Affecting Use Behavior of QRIS Payment System in DKI Jakarta. *Turkish Journal of Computer and Mathematics Education*, 12(6), 3709–3728.

Madir, J. (2021). *FINTECH: Law and Regulation*. Edward Elgar Publishing.

Moore, D. S., Notz, W., & Fligner, M. A. (2013). *The Basic Practice of Statistics* (sixth ed). W. H. Freeman and Company.

Mubarok, M. A., Tsabitah, D., Ningtias, L. A., Meylianingrum, K., & Sapta Pradana, A. W. (2023). UTAUT Model to Explore Factors Influencing QRIS Adoption Among Economics Students in Malang. *Peradaban Journal of Economic and Business*, 2(2), 137–154. <https://doi.org/10.59001/pjeb.v2i2.106>

Natswa, S. L., & Subagyo. (2024). Gen Z's Cashless Behavior: How QRIS Moderating Digital Financial Literacy and Spending Behavior Affects on E-Wallet Utilization? *The 6th International Research Conference on Economics and Business Volume 2024, Idc*, 306-324. <https://doi.org/10.18502/kss.v9i4.15078>

Nuswantoro, S. A., Muhammad Ulfi, Miftahurizqi, & Muhammad Rafli. (2024). Identification of Factors Influencing the Use of QRIS Using TAM and UTAUT 2 Methods. *Scientific Journal of Informatics*, 11(2), 451–466. <https://doi.org/10.15294/sji.v11i2.3562>

Paramita, E. D., & Cahyadi, E. R. (2024). The Determinants of Behavioral Intention and Use Behavior of QRIS as Digital Payment Method Using Extended UTAUT Model. *Indonesian Journal of Business and Entrepreneurship*, 10(1), 132–145. <https://doi.org/10.17358/ijbe.10.1.132>

Pham, C. D., Le, P. T., & Vo, H. M. (2023). Determinants of Online Education Technology Acceptance Among Vietnamese Undergraduates: A UTAUT-Typed Model Analysis. *Vietnam Journal of Education*, 7(3), 288–301.

<https://doi.org/10.52296/vje.2023.303>

Rachmawati, Y. N., Iksanty, I. D., Fadilah, D. H., Nurfitriah, & Masrizal. (2025). *QRIS Adoption In The Millenial Generation: Approach Unified Theory Of Acceptance And Use Of Technology (UTAUT) Theory* (Vol. 2024, Issue Ijcah 2024). Atlantis Press SARL. https://doi.org/10.2991/978-2-38476-317-7_153

Ramayanti, R., Azhar, Z., & Nik Azman, N. H. (2025). Factors influencing intentions to use QRIS: A two-staged PLS-SEM and ANN approach. *Telematics and Informatics Reports*, 17(December 2024), 100185. <https://doi.org/10.1016/j.teler.2024.100185>

Rudolf, A. C. (2024). Analysis of the influence of consumer trust, perceived benefits, and usage risks on qrис user satisfaction with ease of use as a mediating variable: a case study of jatinegara district, east jakarta. *Journal of Economics. Finance and Management Studies*. <https://doi.org/https://doi.org/10.47191/jefms/v7-i10-53>

Safitri, A., & Fihartini, Y. (2024). The Influence of Perceived Ease of Use and Security on QRIS Usage Decisions Among the Community in Lampung Province. *EPaper Bisnis : International Journal of Entrepreneurship and Management*, 1(4), 189–198. <https://doi.org/10.61132/epaperbisnis.v1i4.145>

Safitri, H., Aulia, M., Mumu, R., Muthi, A., Meilany Nabila, Z., & Firmansyah, B. (2024). Preferensi Mahasiswa terhadap Penerimaan Qris Sebagai Teknologi Pembayaran Digital. *Jurnal Pendidikan Tambusai*, 8(2).

Santi, B. N., & Chalid, D. A. (2024). Analysis of the Factors Influencing the Intension to Use Cross-Border QRIS as A Payment Method. *Quantitative Economics and Management Studies*, 5(4), 844–861. <https://doi.org/10.35877/454ri.qems2750>

Sehat, N. S., Daud, S. R., Ahmad, K. S., Suhaime, I. L., & Jogeran, J. (2024). Acceptance Factors Affecting the Intention to Use Mobile Payments: QR Code Applications. *Information Management and Business Review*, 16(1(I)), 287–304. [https://doi.org/10.22610/imbr.v16i1\(i\).3694](https://doi.org/10.22610/imbr.v16i1(i).3694)

Sihombing, A. P., Bangsawan, S., & Pandjaitan, D. R. H. (2024). Analysis of QRIS Users in Indonesia Society in the Cashless. *Journal of Economics Finance and Management Studies*, 7(4). <https://doi.org/10.47191/jefms/v7-i4-17>

Sklavos, G., Theodossiou, G., Papanikolaou, Z., Karelakis, C., & Ragazou, K. (2024). Environmental, Social, and Governance-Based Artificial Intelligence Governance: Digitalizing Firms' Leadership and Human Resources Management. *Sustainability (Switzerland)*, 16(16). <https://doi.org/10.3390/su16167154>

Solimun. (2002). *Multivariate Analysis Structural Equation Modelling (SEM) Lisrel dan Amos*.

Sugandi, E. A. (2021). The COVID-19 Pandemic and Indonesia's Fintech Markets. *SSRN Electronic Journal*, 1281. <https://doi.org/10.2139/ssrn.3916514>

Suryono, R. R., Budi, I., & Purwandari, B. (2021). Detection of fintech P2P lending issues in Indonesia. *Heliyon*, 7(4), e06782. <https://doi.org/10.1016/j.heliyon.2021.e06782>

Tatian, C. T., Nurabiah, Ridhawati, R., & Thao, H. T. P. (2024). From wallets to screens: Exploring the determinants of QRIS payment adoption among Millennials in Eastern Indonesia. *JEMA: Jurnal Ilmiah Bidang Akuntansi Dan Manajemen*, 21(1), 87–113. <https://doi.org/10.31106/jema.v21i1.21712>

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information: Toward a Unified View. *MIS Quarterly*, 27(3), 425–478. <https://www.jstor.org/stable/30036540>

Wibowo, N. A. P., & Sobari, N. (2023). The influence of behavioral intention, facilitating condition, and habit on use behavioral of QRIS: a study on mobile banking services. *Gema Wiralodra*, 14(3), 1243–1258.

Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2015). The unified theory of acceptance and use of technology (UTAUT): A literature review. *Journal of Enterprise Information Management*, 28(3), 443–448. <https://doi.org/10.1108/JEIM-09-2014-0088>

Zikmund, W. G. (2000). *Business Research Methods* (sixth ed). Harcourt College Publishers.