Analysis of the Potential Use of Graphene Oxide Nanoparticles in the Field of Materials: Bibliometric Analysis

  • Sultan Nazmi Chairul Islam Indonesia University of Education
Keywords: nanoparticles, Graphene Oxide, Materials, Bibliometrics

Abstract

This research was carried out to present bibliometric analysis which can be useful for mapping ongoing research topics and trends, especially in the topic of the use of graphene oxide in the materials field, so that it is hoped that it can help further research that will be carried out. The research method used is descriptive qualitative with bibliometric analysis using VOSviewer to visualize related research terms. Data collection was carried out using the publish and publish application using the keywords graphene oxide, nanoparticles, and materials with a time span of 2017 to 2023. The research results showed that there were fluctuations in the number of research conducted each year on the topic of graphene oxide.

References

Aziz, ZI, & Tjahjono, A. (2022). Synthesis of charcoal-based Graphene Oxide (GO) using the liquid phase exfoliation (LPE) method. Core Journal of Physics, 5(2), 1. https://doi.org/10.20884/1.jtf.2022.5.2.5488
Babak, F., Abolfazl, H., Alimorad, R., & Parviz, G. (2014). Preparation and mechanical properties of graphene oxide: Cement nanocomposites. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/276323
Cahyani, AS (2018). SYNTHESIS OF GRAPHENE OXIDE BASED ON ZINC-CARBON BATTERY WASTE GRAPHITE IN LIQUID PHASE USING AUDIOSONIC AND ULTRASONIC FREQUENCIES. Yogyakarta: UNY, 53(1), 1–8. http://www.tfd.org.tw/opencms/english/about/background.html%0Ahttp://dx.doi.org/10.1016/j.cirp.2016.06.001%0Ahttp://dx.doi. org/10.1016/j.powtec.2016.12.055%0Ahttps://doi.org/10.1016/j.ijfatigue.2019.02.006%0Ahttps://doi.org/10.1016/j.matlet.2019.04.024%0Aht
callister JR, W.D., & Rethwisch, D.G. (2020). Callister's Materials Science and Engineering. John Wiley & Sons.
David, IG, Popa, DE, & Buleandra, M. (2017). Pencil graphite electrodes: A versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry, 2017(Cv). https://doi.org/10.1155/2017/1905968
Dayana Priyadharshini, S., Manikandan, S., Kiruthiga, R., Rednam, U., Babu, P.S., Subbaiya, R., Karmegam, N., Kim, W., & Govarthanan, M. (2022). Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives – A review. Environmental Pollution, 306, 119377. https://doi.org/https://doi.org/10.1016/j.envpol.2022.119377
Dimiev, A. M., & Tour, J. M. (2014). Mechanism of graphene oxide formation. ACS Nano, 8(3), 3060–3068.
Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. Journal of Business Research, 135, 758–773. https://doi.org/https://doi.org/10.1016/j.jbusres.2021.07.015
Erdinç, G. (2023). Graphene on Dentistry: A Bibliometric and Scientometric Analysis. Nigerian Journal of Clinical Practice, 26(1), 1070–1077. https://doi.org/10.4103/njcp.njcp
Indriati, D., & Nandiyanto, ABD (2023). Bibliometric Analysis of Hydrogels from Graphene Oxide Nanoparticles Using the VOSviewer Application. Fullerenes Journal of Chemistry, 7(2), 90–100. https://doi.org/10.37033/fjc.v7i1.461
Joshi, N.C., & Gururani, P. (2022). Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Current Research in Green and Sustainable Chemistry, 5, 100306. https://doi.org/https://doi.org/10.1016/j.crgsc.2022.100306
Lin, F., Zhou, Y., Xu, R., Zhou, M., Connolly, A.M., Young, R.J., & Kinloch, I.A. (2023). Production of Graphene/Inorganic Matrix Composites through the Sintering of Graphene Oxide Flakes Decorated with CuWO4·2H2O Nanoparticles. ACS Omega, 8(14), 13131–13139. https://doi.org/10.1021/acsomega.3c00063
Luo, 2022). Trimetallic metal–organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion. Coordination Chemistry Reviews, 461, 214505. https://doi.org/https://doi.org/10.1016/j.ccr.2022.214505
Manikandan, V., & Lee, N.Y. (2023). Reduced graphene oxide: Biofabrication and environmental applications. Chemosphere, 311, 136934. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.136934
Mehlin, C., Boni, E., Buckner, F.S., Engel, L., Feist, T., Gelb, M.H., Haji, L., Kim, D., Liu, C., Mueller, N., Myler, P.J., Reddy, J.T., Sampson, J.N., Subramanian, E., Van Voorhis, W.C., Worthey, E., Zucker, F., & Hol, W.G.J. (2006). Heterologous expression of proteins from Plasmodium falciparum: Results from 1000 genes. Molecular and Biochemical Parasitology, 148(2), 144–160. https://doi.org/https://doi.org/10.1016/j.molbiopara.2006.03.011
Mursyidah, Adi Novriansyah, Novia Rita, AH (2015). Effect of Nanosilica Injection to Oil Recovery Factor in Low Porosity and Permeability Reservoir. Journal of Intellect, 9(2), 11–13.
Nandiyanto, ABD, Ragadhita, R., Al Husaeni, DN, & Nugraha, WC (2023). Research trends on the use of mercury in gold mining: Literature review and bibliometric analysis. Moroccan Journal of Chemistry, 11(1), 1–19. https://doi.org/10.48317/IMIST.PRSM/morjchem-v%vi%i.36576
Neuberger, N., Adidharma, H., & Fan, M. (2018). Graphene: A review of applications in the petroleum industry. Journal of Petroleum Science and Engineering, 167, 152–159. https://doi.org/https://doi.org/10.1016/j.petrol.2018.04.016
Obayomi, K.S., Lau, SY, Danquah, M., Chiong, T., & Takeo, M. (2022). Advances in graphene oxide based nanobiocatalytic technology for wastewater treatment. Environmental Nanotechnology, Monitoring & Management, 17, 100647. https://doi.org/https://doi.org/10.1016/j.enmm.2022.100647
Pandey, A. K., Hossain, M. S., Tyagi, V. V, Abd Rahim, N., Selvaraj, J. A. /L., & Sari, A. (2018). Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renewable and Sustainable Energy Reviews, 82, 281–323. https://doi.org/https://doi.org/10.1016/j.rser.2017.09.043
Peng, H., Ge, Y., Cai, C.S., Zhang, Y., & Liu, Z. (2019). Mechanical properties and microstructure of graphene oxide cement-based composites. Construction and Building Materials, 194, 102–109. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.10.234
Schniepp, H.C., Li, J.-L., McAllister, MJ, Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., & Aksay, IA (2006). Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 110(17), 8535–8539. https://doi.org/10.1021/jp060936f
Singh Chauhan, S. M., & Mishra, S. (2011). Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules, 16(9), 7256–7266. https://doi.org/10.3390/molecules16097256
Syakir, N., Nurlina, R., Anam, S., Aprilia, A., Hidayat, S., & -, F. (2015). Study on Making Graphite Oxide for Production of Graphene Oxide in Large Quantities (Pages 26 to 29). Indonesian Journal of Physics, 19(56), 26–29. https://doi.org/10.22146/jfi.24354
Taha, N.M., & Lee, S. (2015). Nano Graphene Application Improving Drilling Fluids Performance. In International Petroleum Technology Conference (p. D021S013R005). https://doi.org/10.2523/IPTC-18539-MS
Xiang, S., Mao, S., Chen, F., Zhao, S., Su, W., Fu, L., Zare, N., & Karimi, F. (2022). A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. Chemosphere, 306, 135517. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135517
Zhao, L., Deng, J., Sun, P., Liu, J., Ji, Y., Nakada, N., Qiao, Z., Tanaka, H., & Yang, Y. (2018). Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Science of the Total Environment, 627, 1253–1263. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.02.006
Published
2023-12-25
How to Cite
Chairul Islam, S. N. (2023). Analysis of the Potential Use of Graphene Oxide Nanoparticles in the Field of Materials: Bibliometric Analysis. Journal of Scientech Research and Development, 5(2), 672-683. https://doi.org/10.56670/jsrd.v5i2.205